Three-points Kontsevich integral for braids

V. P. Leksin

State Social-Humanity University, Kolomna, Russia

4th Russian-Chinese Conference in Knot Theory and related Topics

$$
\text { July } 62017
$$

Moscow -2017

Formal connections

Let $\nabla=d-\Omega$ be a formal connection. Formal differential 1-form

$$
\Omega=\sum_{\{i, j\} \subset\{1,2, \ldots, n\}} B_{i j} \frac{d\left(z_{i}-z_{j}\right)}{z_{i}-z_{j}}
$$

is the meromorphic 1-form on \mathbb{C}^{n} with formal coefficients $B_{i j}$. Forms $\omega_{i j}=\frac{d\left(z_{i}-z_{j}\right)}{z_{i}-z_{j}}$ depend only unordered pair points z_{i} and z_{j}. We suppose that $B_{i j}=B_{j i}$. As well-known constant formal coefficients $B_{i j}$ may be interpreted as chord diagrams.

Integrability of formal connections

Frobenius condition of the integrability

$$
d \Omega=\Omega \wedge \Omega
$$

of formal connection ∇ is equivalent two equalities $d \Omega=0$ and $\Omega \wedge \Omega=0$ or to the following relations

$$
\begin{gather*}
{\left[B_{i j}, B_{k l}\right]=0, \text { for }\{i, j\} \cap\{k, l\}=\emptyset} \tag{R1}\\
{\left[B_{i j}, B_{j k}+B_{i k}\right]=0, \text { for } i \neq j \neq k} \tag{R2}
\end{gather*}
$$

Here $[A, B]=A B-B A$. Second series of relations (R2) coincide with 4-term relations for chord diagrams $B_{i j}$.

Parallel transport of formal connections and Kontsevich integral

Basic ingredient of Kontsevich integral is the parallel transport

$$
T_{\nabla}(\gamma)=1+\int_{\gamma} \Omega+\int_{\gamma} \Omega \Omega+\cdots
$$

of integrable formal connection $\nabla=d-\Omega$. Here γ is a path in $\mathbb{C}^{n} \backslash \cup_{i \neq j}\left\{z_{i} \neq z_{j}\right\}$ presenting a braid. Summands $\int_{\gamma}(\Omega)^{r}, r=$
$1,2, \ldots$ are the r-iterated Chen integrals

$$
\int_{\gamma}(\Omega)^{r}=\sum_{p_{1}<q_{1}, p_{2}<q_{2} \ldots p_{r}<q_{r}} B_{p_{1}, q_{1}} B_{p_{2}, q_{2}} \cdots B_{p_{r}, q_{r}} \int_{\gamma} \omega_{p_{1}, q_{1}} \omega_{p_{2}, q_{2}} \ldots \omega_{p_{r}, q_{r}},
$$

where

$$
\begin{gathered}
\int_{\gamma} \omega_{p_{1}, q_{1}} \omega_{p_{2}, q_{2}} \ldots \omega_{p_{r}, q_{r}}= \\
=\int_{\Delta^{r}} f_{1}\left(t_{1}\right) f_{2}\left(t_{2}\right) \cdots f_{r}\left(t_{r}\right) d t_{1} d t_{2} \ldots d t_{r}= \\
=\int_{0}^{1}\left(\ldots\left(\int_{0}^{t_{4}} \int_{0}^{t_{3}}\left(\int_{0}^{t_{2}} f_{1}\left(t_{1}\right) d t_{1}\right) f_{2}\left(t_{2}\right) d t_{2}\right) d t_{3} \ldots\right) f_{r}\left(t_{r}\right) d t_{r}
\end{gathered}
$$

Here

$$
\Delta^{r}=\left\{\left(t_{1}, t_{2}, \ldots, t_{r}\right) \mid 0 \leq t_{1}<\leq t_{2} \leq \ldots \leq t_{r} \leq 1 \subset \mathbb{R}^{r}\right\}=
$$

is r-simplex in affine space \mathbb{R}^{r} and

$$
\gamma^{*} \omega_{p_{s}, q_{s}}=f_{s}(t) d t
$$

is differential 1 -form on segment $I=[0,1]$.

The value of the parallel transport $T_{\nabla}(\gamma)$ of integrable connection ∇ depends only from the homotopic class of the path γ with fixed ends.

Parallel transport T_{∇} possesses the multiplicative property

$$
T_{\nabla}\left(\gamma_{1} \gamma_{2}\right)=T_{\nabla}\left(\gamma_{1}\right) T_{\nabla}\left(\gamma_{2}\right)
$$

when the product $\gamma_{1} \gamma_{2}$ is defined.

Representations of pure braid groups in chord diagram algebras

Let $C h_{n}=\mathbb{C}\left[B_{i j}, 1 \leq i \neq j \leq n\right] / J$ be chord diagram algebra.
Ideal J in the polynomial algebra of non-commutative variables $\mathbb{C}\left[B_{i j}, 1 \leq i \neq j \leq n\right]$ is generated by terms [$\left.B_{i j}, B_{k l}\right],\{i, j\} \cap$ $\{k, l\}=\emptyset ;\left[B_{i j}, B_{j k}+B_{i k}\right] i \neq j \neq k$. Denote \mathbb{C}_{*}^{n} the complement $\mathbb{C}_{*}^{n}=\mathbb{C}^{n} \backslash \cup_{1 \leq i<j \leq n}\left\{z_{i}-z_{j}=0\right\}$ of the \mathbb{C}^{n} to the union of diagonal hyperplanes $z_{i}-z_{j}=0$. Take $z_{0}=(1,2, \ldots, n) \in \mathbb{C}_{*}^{n}$. The restriction of the parallel transport T_{∇} of integrable connection ∇ on the loop space $\Omega_{z_{0}} \mathbb{C}_{*}^{n}$ defines a representation ρ_{∇} of the fundamental group $\pi_{1}\left(\mathbb{C}_{*}^{n}, z_{0}\right)$.

This fundamental group is isomorphic to the pure braid group P_{n},

We obtain the representation

$$
\rho_{\nabla}: P_{n} \longrightarrow \widehat{C h}_{n}
$$

in completed chord diagram algebra $\widehat{C} h_{n}=C \ll B_{i j}, 1 \leq i \neq$ $j \leq n \gg / J$.

Since $\operatorname{Ker} \rho_{\nabla}=1$ (T.Kohno) then ρ_{∇} is full invariant of pure braids with values in the algebra $\widehat{C} h_{n}$.

Three-point analog of the Kontsevich integral

V.O.Manturov proposed to consider the formal connections with forms

$$
\Omega_{1}=\sum_{\{i, j, k\} \subset\{1,2, \ldots, n\}} A_{i j k} \omega_{i j k},
$$

where meromorphic 1-forms

$$
\omega_{i j k}=\frac{d\left(z_{i}-z_{j}\right)}{z_{i}-z_{j}}+\frac{d\left(z_{j}-z_{k}\right)}{z_{j}-z_{k}}+\frac{d\left(z_{i}-z_{k}\right)}{z_{i}-z_{k}}
$$

depend only from unordered collection of three points z_{i}, z_{j}, z_{k} and $A_{i j k}$ are formal coefficients with unordered collections of subscripts.

The integrability condition of this connection may be obtained by rewriting of the form Ω_{1} as $\Omega_{1}=\sum_{\{i, j\} \subset\{1,2, \ldots, n\}} B_{i j} \omega_{i j}$. Here

$$
B_{i j}=\sum_{r=1, r \neq i, j}^{n} A_{i j r}
$$

Then relations on $A_{i j k}$ (threesecant - in Manturov terminology) are equalities

$$
\begin{align*}
& {\left[\sum_{r=1, r \neq i, j}^{n} A_{i j r}, \sum_{m=1, m \neq k, l}^{n} A_{k l m}\right]=0,\{i, j\} \cap\{k, l\}=\emptyset .} \tag{R3}\\
& {\left[\sum_{p=1, p \neq i, j}^{n} A_{i j p}, \sum_{q=1, q \neq j, k}^{n} A_{k l q}+\sum_{r=1, r \neq i, k}^{n} A_{k l r}\right]=0, i \neq j \neq k .} \tag{R4}
\end{align*}
$$

In particular case $n=4$ we have relations:

$$
\begin{gathered}
{\left[A_{123}+A_{124}, A_{134}+A_{234}\right]=0} \\
{\left[A_{123}+A_{134}, A_{124}+A_{234}\right]=0} \\
{\left[A_{124}+A_{134}, A_{123}+A_{234}\right]=0} \\
{\left[A_{123}+A_{124}, 2 A_{123}+A_{134}+A_{234}\right]=0} \\
{\left[A_{123}+A_{124}, 2 A_{124}+A_{134}+A_{234}\right]=0} \\
{\left[A_{123}+A_{234}, 2 A_{234}+A_{124}+A_{134}\right]=0} \\
{\left[A_{123}+A_{234}, 2 A_{123}+A_{134}+A_{234}\right]=0}
\end{gathered}
$$

Representation of the P_{n} in threesecant algebra

Define the threesecatnt algebra as quotient of algebra noncommutative polynomials

$$
T S_{n}=\mathbb{C}\left[A_{i j k},\{i, j k\} \subset\{1,2, \ldots, n\}\right] / J_{1}
$$

where J_{1} is ideal generated right sides of relations $\left(R_{1}\right)$ and $\left(R_{2}\right)$. The completed the threesecatnt algebra is following quotientalgebra

$$
\widehat{T S}_{n}=\mathbb{C} \ll A_{i j k}, \quad\{i, j k\} \subset\{1,2, \ldots, n\} \gg / J_{1}
$$

Parallel transport $T_{\nabla_{1}}$ of the integrable connection $\nabla_{1}=d-\Omega_{1}$ with form Ω_{1} under restriction on the loop space $\Omega_{z_{0}} \mathbb{C}_{*}^{n}$ defines
a representation $\rho_{\nabla_{1}}$ of pure braid group P_{n} in the completed threesecant algebra, i.e the associative algebra of series from non-commutative variables $A_{i j k}$ with relations $\left(R_{1}\right)$ and $\left(R_{2}\right)$

$$
\rho_{\nabla_{1}}: P_{n} \longrightarrow \widehat{T S}_{n} .
$$

Let a path $\gamma \in \Omega_{z_{0}} \mathbb{C}_{*}^{n}$ defines a braid $b \in P_{n}$ We call the value $T_{\nabla_{1}}(\gamma)=\rho_{\nabla_{1}}(b)$ the three-point Kontsevich integral for braid b.

Generators and relations of pure braid group P_{n}

Let L be some line in affine space \mathbb{C}^{n}, intersecting all hyperplanes $H_{i j}=\left\{z \in \mathbb{C}^{n} \mid z_{i}=z_{j}\right\}$ in general position. Denote $p_{i j}=l \cap H_{i j} \in$ L points of intersection L and $H_{i j}, 1 \leq i<j \leq n$. Take loops $\gamma_{i j}$ on L with initial point $p \neq p_{i j}, 1 \leq i<j \leq n, l$ single around about $p_{i j}$. We suppose that loops $\gamma_{i j} \cap \gamma_{r s}=p,\{i, j\} \neq\{r, s\}$. Loops $\gamma_{i j}, 1 \leq i<j \leq n$ present a system of free generators $b_{i j}$ in free group $\pi_{1}\left(L \backslash\left\{p_{i j}, 1 \leq i<j \leq n\right\}, z^{0}\right)$ and a system of generators $b_{i} j$ in pure braid groups $P B_{n}=\pi_{1}\left(\mathbb{C}_{*}^{n}, z_{0}=(1,2, \ldots, n)\right)$. Relations in $P B_{n}$ correspond loops in a transversal plane to the line L. These loops go around about points of intersection of hyperplanes $H_{i j k}$ and $H_{i j k l}$.

Generators and relations of Birman-Ko-Lee:

$$
\begin{gathered}
b_{i j} b_{k l}=b_{k l} b_{i j}, i<j<k<l \text { или } i<k<l<j, \\
b_{i j} b_{i k} b_{j k}=b_{i k} b_{j k} b_{i j}, i<j<k \\
b_{j l} b_{k l} b_{i k} b_{j k}=b_{j k} b_{i k} b_{k l} b_{j l}, \quad i<j<k<l
\end{gathered}
$$

Artin generators and Birman-Ko-Lee generators

$$
b_{i j}=A_{i, i+1} A_{i+1, i+2} \cdots A_{j-1, j} .
$$

Manturov group G_{n}^{3}

The Manturov group G_{n}^{3} is defined as a group with generators $a_{i j k},\{i, j, k\} \subset\{1,2, \ldots, n\}$ and relations

$$
\begin{gathered}
a_{i j k}^{2}=1, \\
a_{i j k} a_{p q r}=a_{p q r} a_{i j k}, \text { if }|\{ß, j, k\} \cap\{p, q, r\}| \leq 1, \\
\left(a_{j k l} a_{i k l} a_{i j l} a_{i j k}\right)^{2}=1, \text { for } \forall\{i, j, k, l\} \subset\{1,2, \ldots, n\} .
\end{gathered}
$$

Manturov-Nikonov representation of pure braid groups

Manturov-Nikonov defined the homomorphism φ_{n} of the pure braid P_{n} in the group G_{n}^{3} by values on generators $b_{i j}$

$$
\begin{equation*}
\varphi_{n}\left(b_{i j}\right)=c_{i i+1}^{-1} \ldots c_{i j-1}^{-1} c_{i j}^{2} c_{i j-1} \ldots c_{i i+1} \tag{1}
\end{equation*}
$$

где

$$
\begin{equation*}
c_{i j}=\prod_{k=j+1}^{n} a_{i j k} \prod_{k=1}^{j-1} a_{i j k} \tag{2}
\end{equation*}
$$

Realization of $\varphi_{n}\left(b_{i j}\right)$ as values parallel transport

Let $\gamma_{i j} \in \Omega_{z_{0}} \mathbb{C}_{*}^{n}$ be loops presenting generators $b_{i j}$ of the P_{n}. There are exist a thresecants $A_{i j k}$ in the group algebra $\mathbb{C}\left[G_{n}^{3}\right]$ is the group algebra of the Manturov group G_{n}^{3}, such that we have equalities $T_{\nabla_{1}}\left(\gamma_{i j}\right)=\operatorname{varph} i_{n}\left(b_{i} j\right)$.

Lappo-Danilevskii inversion method

Let us consider the group algebra $\mathfrak{g}_{n}^{3}=\mathbb{C}\left[G_{n}^{3}\right]$ as Lie algebra with respect ordinary Lie bracket $[a, b]=a b-b a$. Universal enveloping algebra $U\left(\mathfrak{g}_{n}^{3}\right)$ is isomorphic to $\mathbb{C}\left[G_{n}^{3}\right]$. Let $\widehat{\mathbb{C}\left[G_{n}^{3}\right]}$ be the completion of the $\mathbb{C}\left[G_{n}^{3}\right]$ by the augmentation ideal $n J \subset \mathbb{C}\left[G_{n}^{3}\right]$, generated elements a $g-1, g \in G_{n}^{3}$. We will look for $B_{i j}$ in the ideal $\widehat{J} \subset \widehat{\mathbb{C}\left[G_{n}^{3}\right]}$.

Consider the system of equations

$$
\varphi_{n}\left(b_{i j}\right)=T_{\nabla}\left(\gamma_{i j}\right)
$$

or
$c_{i, i+1}^{-1} \ldots c_{i, j-1}^{-1} c_{i j}^{2} c_{i, j-1} \ldots c_{i, i+1}=1+\int_{\gamma_{i j}} \Omega+\int_{\gamma_{i j}} \Omega \Omega+\cdots+\int_{\gamma_{\gamma_{i j}}} \Omega^{m}+\cdots$.

Rewritten last system
$c_{i, i+1}^{-1} \ldots c_{i, j-1}^{-1}\left(c_{i j}^{2}-1\right) c_{i, j-1} \ldots c_{i, i+1}=\sum_{p<q} B_{p q} \int_{\gamma_{i j}} \omega_{p q}+\sum_{p<q, r<s} B_{p q} B_{r s} \int_{\gamma_{i j}} \omega_{p q}$
$\cdots+\sum_{p_{1}<q_{1}, p_{2}<q_{2} \ldots p_{m}<q_{m}} B_{p_{1}, q_{1}} B_{p_{2}, q_{2}} \cdots B_{p_{m}, q_{m}} \int_{\gamma_{i j}} \omega_{p_{1}, q_{1}} \omega_{p_{2}, q_{2}} \cdots \omega_{p_{m}, q_{m}}+\cdots$.
Here $\omega_{p q}=\frac{d\left(z_{p}-z_{q}\right)}{z_{p}-z_{q}}$.

By theorem about inverting formal series (then the matrix of the linear part is invertible) we obtain series for $B_{p q}, p<q$ as series
from left parties $M_{i j}=c_{i, i+1}^{-1} \ldots c_{i, j-1}^{-1}\left(c_{i j}^{2}-1\right) c_{i, j-1} \ldots c_{i, i+1}$ of equations above.

Integrability of the formal connections

Integrability of the connection $\nabla=d-\Omega$ may extracted from generating commutator relations of the P_{n}.

We obtain the formal connection $\nabla_{1}=d-\Omega_{1}$ solving the system of the linear equations

$$
B_{i j}=\sum_{r=1, r \neq i, j}^{n} A_{i j r}
$$

The integrability of the ∇ implies the integrability of the ∇_{1}.

Thus we obtain realization

$$
\varphi\left(b_{i j}\right)=\rho_{\nabla_{1}}\left(b_{i j}\right)
$$

of the representation φ_{n} as the monodromy representation of a integrable connection.

References

[1]. N.Bourbaki, Groupes et algèbres de Lie. Paris: Herman, 1968.
[2]. C. Kassel, V. Turaev, Braid groups. Springer-Verlag. 2008.
[3]. T. Kohno, Linear representations of braid groups and classical Yang-Baxter equations. Contemporary Math. 1988. V.78. P. 339-363.
[4]. I. A. Lappo-Danilevskii, Application of functions from matrices to the theory of systems of ordinary linear differential equations Russian translation. Mir, GITTL 1957. 456 p.
[5]. V. P. Leksin, Riemann-Hilbert problem for analytic families of representations. Mathematical Notes. 1991. T. 50. №. 2. P. 832-838.
[6]. W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory. Presentation of groups by generators and relations. New York - London - Sydney: Interscience Publisher, John Wiley and Sons, Inc. 1966.
[7]. O. V. Manturov, Multiplicative integral. Itogi nauki i tekhn.. Ser. Probl. geom.. T. 22, VINITI, M., 1990, 167-215.
[8]. V. O. Manturov, Non-reidemeister knot theory and its applications in dynamical systems, geometry and topology. arXiv:
1501.05208 [math.GT].
[9]. V. O. Manturov and I. M. Nikonov, On braids and groups G_{n}^{3}. arxiv: 1507.03745[math.GT].
[10]. R. Hain Hain R. M. Iterated integrals and homotopy periods. - American Mathematical Soc., 1984. - T. 291.

